If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+50n+80=0
a = 5; b = 50; c = +80;
Δ = b2-4ac
Δ = 502-4·5·80
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-30}{2*5}=\frac{-80}{10} =-8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+30}{2*5}=\frac{-20}{10} =-2 $
| |y|=-18= | | 6x-4=1x+5.25 | | 8x-4=10-4x | | 2x+10+x-13=90 | | -8+12k+22k-11=90 | | 3p+4p=28 | | 6(4-2x)=-108 | | 8k-25=39 | | 5x-3(x-3)=-9+5+1 | | 15x-60=130 | | 4x-29+5x-9=6x-35 | | -2(9v-5)+5v=5(v+4) | | 96=3(p+10) | | 423=758-q | | 8(5+4x)+11=-3(-13+x) | | 4u=4+5u | | 16+4r−8+2r=2r+8r | | -9x+4=4-6x | | 12m-4=2(3+m) | | 3(x-2)=3(9x-4) | | 15x/8=-7 | | ½(4t-6)=16t | | 3x²-14=94 | | -14/5x=-3/9 | | 4s-2=42 | | 12x+12-10x=20 | | 4-3x-2x=-16-x | | 10-10v=-9v | | 3x+9x=3x+21 | | 2x-65=175 | | w—4=5 | | -2(x+4)-3x=1+x |